1,001 research outputs found

    Parietal maps of visual signals for bodily action planning

    Get PDF
    The posterior parietal cortex (PPC) has long been understood as a high-level integrative station for computing motor commands for the body based on sensory (i.e., mostly tactile and visual) input from the outside world. In the last decade, accumulating evidence has shown that the parietal areas not only extract the pragmatic features of manipulable objects, but also subserve sensorimotor processing of others’ actions. A paradigmatic case is that of the anterior intraparietal area (AIP), which encodes the identity of observed manipulative actions that afford potential motor actions the observer could perform in response to them. On these bases, we propose an AIP manipulative action-based template of the general planning functions of the PPC and review existing evidence supporting the extension of this model to other PPC regions and to a wider set of actions: defensive and locomotor actions. In our model, a hallmark of PPC functioning is the processing of information about the physical and social world to encode potential bodily actions appropriate for the current context. We further extend the model to actions performed with man-made objects (e.g., tools) and artifacts, because they become integral parts of the subject’s body schema and motor repertoire. Finally, we conclude that existing evidence supports a generally conserved neural circuitry that transforms integrated sensory signals into the variety of bodily actions that primates are capable of preparing and performing to interact with their physical and social world

    Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites

    Get PDF
    Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localization using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are... The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localization in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications

    From Observed Action Identity to Social Affordances

    Get PDF
    Others' observed actions cause continuously changing retinal images, making it challenging to build neural representations of action identity. The monkey anterior intraparietal area (AIP) and its putative human homologue (phAIP) host neurons selective for observed manipulative actions (OMAs). The neuronal activity of both AIP and phAIP allows a stable readout of OMA identity across visual formats, but human neurons exhibit greater invariance and generalize from observed actions to action verbs. These properties stem from the convergence in AIP of superior temporal signals concerning: (i) observed body movements; and (ii) the changes in the body-object relationship. We propose that evolutionarily preserved mechanisms underlie the specification of observed-actions identity and the selection of motor responses afforded by them, thereby promoting social behavior

    Generalization of seizures parallels the formation of "dark" neurons in the hippocampus and pontine reticular formation after focal-cortical application of 4-aminopyridine (4-AP) in the rat.

    Get PDF
    Distribution and time course of the occurrence of "dark" neurons were compared with the EEG activity and behavior of rats during 4-aminopyridine (4-AP) induced epileptic seizures. A crystal of the K(+) channel blocker 4-AP (0.5 mg/kg) was placed onto the exposed parieto-occipital cortex of Halothane-anesthetized rats for 40 min. Thereafter, the anesthesia was discontinued and the behavioral signs of the epileptic seizure activity were observed. The presence of "dark" neurons was demonstrated by the sensitive silver method of Gallyas in rats sacrificed at 0, 3 and 6 h after the end of the 4-AP crystal application. The EEG activity was recorded in the rats with longer survival times. The EEG analysis revealed the generalization of the epileptic seizures. We found that the formation of "dark" neurons in the hippocampus and the pontine reticular formation paralleled the generalization of the seizures

    Obscuration in AGNs: near-infrared luminosity relations and dust colors

    Full text link
    We combine two approaches to isolate the AGN luminosity at near-infrared wavelengths and relate the near-IR pure AGN luminosity to other tracers of the AGN. Using integral-field spectroscopic data of an archival sample of 51 local AGNs, we estimate the fraction of non-stellar light by comparing the nuclear equivalent width of the stellar 2.3 micron CO absorption feature with the intrinsic value for each galaxy. We compare this fraction to that derived from a spectral decomposition of the integrated light in the central arc second and find them to be consistent with each other. Using our estimates of the near-IR AGN light, we find a strong correlation with presumably isotropic AGN tracers. We show that a significant offset exists between type 1 and type 2 sources in the sense that type 1 sources are 7 (10) times brighter in the near-IR at log L_MIR = 42.5 (log L_X = 42.5). These offsets only becomes clear when treating infrared type 1 sources as type 1 AGNs. All AGNs have very red near-to-mid-IR dust colors. This, as well as the range of observed near-IR temperatures, can be explained with a simple model with only two free parameters: the obscuration to the hot dust and the ratio between the warm and hot dust areas. We find obscurations of A_V (hot) = 5 - 15 mag for infrared type 1 sources and A_V (hot) = 15 - 35 mag for type 2 sources. The ratio of hot dust to warm dust areas of about 1000 is nicely consistent with the ratio of radii of the respective regions as found by infrared interferometry.Comment: 17 pages, 10 Figures, 3 Tables, accepted by A&

    A shared neural substrate for action verbs and observed actions in human posterior parietal cortex

    Get PDF
    High-level sensory and motor cortical areas are activated when processing the meaning of language, but it is unknown whether, and how, words share a neural substrate with corresponding sensorimotor representations. We recorded from single neurons in human posterior parietal cortex (PPC) while participants viewed action verbs and corresponding action videos from multiple views. We find that PPC neurons exhibit a common neural substrate for action verbs and observed actions. Further, videos were encoded with mixtures of invariant and idiosyncratic responses across views. Action verbs elicited selective responses from a fraction of these invariant and idiosyncratic neurons, without preference, thus associating with a statistical sampling of the diverse sensory representations related to the corresponding action concept. Controls indicated that the results are not the product of visual imagery or arbitrary learned associations. Our results suggest that language may activate the consolidated visual experience of the reader

    The neural substrate of orientation short-term memory and resistance to distractor items

    Get PDF
    Abstract We used Positron Emission Tomography to map the neural substrate of human short-term memory for orientation, de®ned as retaining a single orientation in memory over a long delay, by comparing a successive discrimination task with a 6-s delay to the same task with a brief 0.3 s delay and to an identi®cation control task. Short-term memory engaged the superior parietal lobe bilaterally, the middle occipital gyrus bilaterally and the left dorsolateral prefrontal cortex. In addition, we studied the resistance to a distractor item by comparing the successive discrimination task with long delay, with and without an intervening distractor stimulus. This manipulative process engaged left ventral premotor cortex and left dorsolateral prefrontal cortex. The activation of left dorsolateral prefrontal cortex is interpreted as re¯ecting co-ordination between task components. These results, combined with those of two previous studies using an identical reduction strategy, underscore the functional heterogeneity in the prefrontal cortex during short-term and working memory
    corecore